why Pilgrims | what we do | who we are | our work | contact

network


For each project we gather a team with complementary skills and varying backgrounds. We prefer to work together with passionate, involved, flexible and independent professionals. 

 

 

 

Technology review


How AI is reinventing what computers are

Fall 2021: the season of pumpkins, pecan pies, and peachy new phones. Every year, right on cue, Apple, Samsung, Google, and others drop their latest releases. These fixtures in the consumer tech calendar no longer inspire the surprise and wonder of those heady early days. But behind all the marketing glitz, there’s something remarkable going on. 

Google’s latest offering, the Pixel 6, is the first phone to have a separate chip dedicated to AI that sits alongside its standard processor. And the chip that runs the iPhone has for the last couple of years contained what Apple calls a “neural engine,” also dedicated to AI. Both chips are better suited to the types of computations involved in training and running machine-learning models on our devices, such as the AI that powers your camera. Almost without our noticing, AI has become part of our day-to-day lives. And it’s changing how we think about computing.

What does that mean? Well, computers haven’t changed much in 40 or 50 years. They’re smaller and faster, but they’re still boxes with processors that run instructions from humans. AI changes that on at least three fronts: how computers are made, how they’re programmed, and how they’re used. Ultimately, it will change what they are for. 

“The core of computing is changing from number-crunching to decision-­making,” says Pradeep Dubey, director of the parallel computing lab at Intel. Or, as MIT CSAIL director Daniela Rus puts it, AI is freeing computers from their boxes. 

More haste, less speed

The first change concerns how computers—and the chips that control them—are made. Traditional computing gains came as machines got faster at carrying out one calculation after another. For decades the world benefited from chip speed-ups that came with metronomic regularity as chipmakers kept up with Moore’s Law. 

But the deep-learning models that make current AI applications work require a different approach: they need vast numbers of less precise calculations to be carried out all at the same time. That means a new type of chip is required: one that can move data around as quickly as possible, making sure it’s available when and where it’s needed. When deep learning exploded onto the scene a decade or so ago, there were already specialty computer chips available that were pretty good at this: graphics processing units, or GPUs, which were designed to display an entire screenful of pixels dozens of times a second. 

Anything can become a computer. Indeed, most household objects, from toothbrushes to light switches to doorbells, already come in a smart version.

Now chipmakers like Intel and Arm and Nvidia, which supplied many of the first GPUs, are pivoting to make hardware tailored specifically for AI. Google and Facebook are also forcing their way into this industry for the first time, in a race to find an AI edge through hardware. 

For example, the chip inside the Pixel 6 is a new mobile version of Google’s tensor processing unit, or TPU. Unlike traditional chips, which are geared toward ultrafast, precise calculations, TPUs are designed for the high-volume but low-­precision calculations required by neural networks. Google has used these chips in-house since 2015: they process people’s photos and natural-­language search queries. Google’s sister company DeepMind uses them to train its AIs. 

In the last couple of years, Google has made TPUs available to other companies, and these chips—as well as similar ones being developed by others—are becoming the default inside the world’s data centers. 

AI is even helping to design its own computing infrastructure. In 2020, Google used a reinforcement-­learning algorithm—a type of AI that learns how to solve a task through trial and error—to design the layout of a new TPU. The AI eventually came up with strange new designs that no human would think of—but they worked. This kind of AI could one day develop better, more efficient chips. 

Show, don’t tell

The second change concerns how computers are told what to do. For the past 40 years we have been programming computers; for the next 40 we will be training them, says Chris Bishop, head of Microsoft Research in the UK. 

Traditionally, to get a computer to do something like recognize speech or identify objects in an image, programmers first had to come up with rules for the computer.

With machine learning, programmers no longer write rules. Instead, they create a neural network that learns those rules for itself. It’s a fundamentally different way of thinking. 

Examples of this are already commonplace: speech recognition and image identification are now standard features on smartphones. Other examples made headlines, as when AlphaZero taught itself to play Go better than humans. Similarly, AlphaFold cracked open a biology problem—working out how proteins fold—that people had struggled with for decades. 

For Bishop, the next big breakthroughs are going to come in molecular simulation: training computers to manipulate the properties of matter, potentially making world-changing leaps in energy usage, food production, manufacturing, and medicine. 

Breathless promises like this are made often. It is also true that deep learning has a track record of surprising us. Two of the biggest leaps of this kind so far—getting computers to behave as if they understand language and to recognize what is in an image—are already changing how we use them.

Computer knows best

For decades, getting a computer to do something meant typing in a command, or at least clicking a button. 

Machines no longer need a keyboard or screen for humans to interact with. Anything can become a computer. Indeed, most household objects, from toothbrushes to light switches to doorbells, already come in a smart version. But as they proliferate, we are going to want to spend less time telling them what to do. They should be able to work out what we need without being told.

This is the shift from number-­crunching to decision-making that Dubey sees as defining the new era of computing.  

Rus wants us to embrace the cognitive and physical support on offer. She imagines computers that tell us things we need to know when we need to know them and intervene when we need a hand. “When I was a kid, one of my favorite movie [scenes] in the whole world was ‘The Sorcerer’s Apprentice,’” says Rus. “You know how Mickey summons the broom to help him tidy up? We won’t need magic to make that happen.”

We know how that scene ends. Mickey loses control of the broom and makes a big mess. Now that machines are interacting with people and integrating into the chaos of the wider world, everything becomes more uncertain. The computers are out of their boxes.


How AI is reinventing what computers are 2021/10/22 12:00

Decarbonizing industries with connectivity and 5G

Around the world, citizens, governments, and corporations are mobilizing to reduce carbon emissions. The unprecedented and ongoing climate disasters have put the necessity to decarbonize into sharp relief. In 2021 alone these climate emergencies included a blistering “heat dome” of nearly 50 °C in the normally temperate Pacific Northwest of the United States and Canada, deadly and destructive flooding in China and across Europe, and wildfires globally from Turkey to California, the latter of which damaged close to 1 million acres.

The United Nations Intergovernmental Panel on Climate Change’s sixth climate change report—an aggregated assessment of scientific research prepared by some 300 scientists across 66 countries—has served as the loudest and clearest wake-up call to date on the global warming crisis. The panel unequivocally attributes the increase in the earth’s temperature—it has risen by 1.1 °C since the Industrial Revolution—to human activity. Without substantial and immediate reductions in carbon dioxide and other greenhouse gas emissions, temperatures will rise between 1.5 °C and 2 °C before the end of the century. That, the panel posits, will lead all of humanity to a “greater risk of passing through ‘tipping points,’ thresholds beyond which certain impacts can no longer be avoided even if temperatures are brought back down later on.”

Corporations and industries must therefore redouble their greenhouse gas emissions reduction and removal efforts with speed and precision—but to do this, they must also commit to deep operational and organizational transformation. Cellular infrastructure, particularly 5G, is one of the many digital tools and technology-enabled processes organizations have at their disposal to accelerate decarbonization efforts.  

5G and other cellular technology can enable increasingly interconnected supply chains and networks, improve data sharing, optimize systems, and increase operational efficiency. These capabilities could soon contribute to an exponential acceleration of global efforts to reduce carbon emissions.

Industries such as energy, manufacturing, and transportation could have the biggest impact on decarbonization efforts through the use of 5G, as they are some of the biggest greenhouse-gas-emitting industries, and all rely on connectivity to link to one another through communications network infrastructure.

The higher performance and improved efficiency of 5G—which delivers higher multi-gigabit peak data speeds, ultra-low latency, increased reliability, and increased network capacity—could help businesses and public infrastructure providers focus on business transformation and reduction of harmful emissions. This requires effective digital management and monitoring of distributed operations with resilience and analytic insight. 5G will help factories, logistics networks, power companies, and others operate more efficiently, more consciously, and more purposely in line with their explicit sustainability objectives through better insight and more powerful network configurations.

This report, “Decarbonizing industries with connectivity & 5G,” argues that the capabilities enabled by broadband cellular connectivity primarily, though not exclusively, through 5G network infrastructure are a unique, powerful, and immediate enabler of carbon reduction efforts. They have the potential to create a transformational acceleration of decarbonization efforts, as increasingly interconnected supply chains, transportation, and energy networks share data to increase efficiency and productivity, hence optimizing systems for lower carbon emissions.

Explore more.


Decarbonizing industries with connectivity and 5G 2021/10/20 23:00

Rediscover trust in cybersecurity

The world has changed dramatically in a short amount of time—changing the world of work along with it. The new hybrid remote and in-office work world has ramifications for tech—specifically cybersecurity—and signals that it’s time to acknowledge just how intertwined humans and technology truly are.

Enabling a fast-paced, cloud-powered collaboration culture is critical to rapidly growing companies, positioning them to out innovate, outperform, and outsmart their competitors. Achieving this level of digital velocity, however, comes with a rapidly growing cybersecurity challenge that is often overlooked or deprioritized : insider risk, when a team member accidentally—or not—shares data or files outside of trusted parties. Ignoring the intrinsic link between employee productivity and insider risk can impact both an organizations’ competitive position and its bottom line. 

You can’t treat employees the same way you treat nation-state hackers

Insider risk includes any user-driven data exposure event—security, compliance or competitive in nature—that jeopardizes the financial, reputational or operational well-being of a company and its employees, customers, and partners. Thousands of user-driven data exposure and exfiltration events occur daily, stemming from accidental user error, employee negligence, or malicious users intending to do harm to the organization. Many users create insider risk accidentally, simply by making decisions based on time and reward, sharing and collaborating with the goal of increasing their productivity. Other users create risk due to negligence, and some have malicious intentions, like an employee stealing company data to bring to a competitor. 

From a cybersecurity perspective, organizations need to treat insider risk differently than external threats. With threats like hackers, malware, and nation-state threat actors, the intent is clear—it’s malicious. But the intent of employees creating insider risk is not always clear—even if the impact is the same. Employees can leak data by accident or due to negligence. Fully accepting this truth requires a mindset shift for security teams that have historically operated with a bunker mentality—under siege from the outside, holding their cards close to the vest so the enemy doesn’t gain insight into their defenses to use against them. Employees are not the adversaries of a security team or a company—in fact, they should be seen as allies in combating insider risk.

Transparency feeds trust: Building a foundation for training

All companies want to keep their crown jewels—source code, product designs, customer lists—from ending up in the wrong hands. Imagine the financial, reputational, and operational risk that could come from material data being leaked before an IPO, acquisition, or earnings call. Employees play a pivotal role in preventing data leaks, and there are two crucial elements to turning employees into insider risk allies: transparency and training. 

Transparency may feel at odds with cybersecurity. For cybersecurity teams that operate with an adversarial mindset appropriate for external threats, it can be challenging to approach internal threats differently. Transparency is all about building trust on both sides. Employees want to feel that their organization trusts them to use data wisely. Security teams should always start from a place of trust, assuming the majority of employees’ actions have positive intent. But, as the saying goes in cybersecurity, it’s important to “trust, but verify.” 

Monitoring is a critical part of managing insider risk, and organizations should be transparent about this. CCTV cameras are not hidden in public spaces. In fact, they are often accompanied by signs announcing surveillance in the area. Leadership should make it clear to employees that their data movements are being monitored—but that their privacy is still respected. There is a big difference between monitoring data movement and reading all employee emails.

Transparency builds trust—and with that foundation, an organization can focus on mitigating risk by changing user behavior through training. At the moment, security education and awareness programs are niche. Phishing training is likely the first thing that comes to mind due to the success it’s had moving the needle and getting employees to think before they click. Outside of phishing, there is not much training for users to understand what, exactly, they should and shouldn’t be doing.

For a start, many employees don’t even know where their organizations stand. What applications are they allowed to use? What are the rules of engagement for those apps if they want to use them to share files? What data can they use? Are they entitled to that data? Does the organization even care? Cybersecurity teams deal with a lot of noise made by employees doing things they shouldn’t. What if you could cut down that noise just by answering these questions?

Training employees should be both proactive and responsive. Proactively, in order to change employee behavior, organizations should provide both long- and short-form training modules to instruct and remind users of best behaviors. Additionally, organizations should respond with a micro-learning approach using bite-sized videos designed to address highly specific situations. The security team needs to take a page from marketing, focusing on repetitive messages delivered to the right people at the right time. 

Once business leaders understand that insider risk is not just a cybersecurity issue, but one that is intimately intertwined with an organization’s culture and has a significant impact on the business, they will be in a better position to out-innovate, outperform, and outsmart their competitors. In today’s hybrid remote and in-office work world, the human element that exists within technology has never been more significant.That’s why transparency and training are essential to keep data from leaking outside the organization. 

This content was produced by Code42. It was not written by MIT Technology Review’s editorial staff.


Rediscover trust in cybersecurity 2021/10/20 20:47

Surgeons have successfully tested a pig’s kidney in a human patient

The news: Surgeons have successfully attached a pig’s kidney to a human patient and watched it start to work, the AP reported today. The pig had been genetically engineered so that its organ was less likely to be rejected. The feat is a potentially huge milestone in the quest to one day use animal organs for human transplants, which would shorten waiting lists.

How it worked: The surgical team, from NYU Langone Health, attached the pig kidney to blood vessels outside the body of a brain-dead woman and observed it for two days. The family agreed to the experiment before the woman was to be taken off life support, the AP reported. The kidney functioned normally—filtering waste and producing urine—and didn’t show signs of rejection during the short observation period. 

The reception: The research was conducted last month and is yet to be peer reviewed or published in a journal, but external experts say it represents a major advance. “There is no doubt that this is a highly significant breakthrough,” says Darren K. Griffin, a professor of genetics at the University of Kent, UK. “The research team were cautious, using a patient who had suffered brain death, attaching the kidney to the outside of the body, and closely monitoring for only a limited amount of time. There is thus a long way to go and much to discover,” he added. 

“This is a huge breakthrough. It’s a big, big deal,” Dorry Segev, a professor of transplant surgery at Johns Hopkins School of Medicine who was not involved in the research, told the New York Times. However, he added, “we need to know more about the longevity of the organ.”

The background: In recent years, research has increasingly zeroed in on pigs as the most promising avenue to help address the shortage of organs for transplant, but it has faced a number of obstacles, most prominently the fact that a sugar in pig cells triggers an aggressive rejection response in humans.

The researchers got around this by genetically altering the donor pig to knock out the gene encoding the sugar molecule that causes the rejection response. The pig was genetically engineered by Revivicor, one of several biotech companies working to develop pig organs to transplant into humans. 

The big prize: There is a dire need for more kidneys. More than 100,000 people in the US are currently waiting for a kidney transplant, and 13 die of them every day, according to the National Kidney Foundation. Genetically engineered pigs could offer a crucial lifeline for these people, if the approach tested at NYU Langone can work for much longer periods.


Surgeons have successfully tested a pig’s kidney in a human patient 2021/10/20 12:32

Getting value from your data shouldn’t be this hard

The potential impact of the ongoing worldwide data explosion continues to excite the imagination. A 2018 report estimated that every second of every day, every person produces 1.7 MB of data on average—and annual data creation has more than doubled since then and is projected to more than double again by 2025. A report from McKinsey Global Institute estimates that skillful uses of big data could generate an additional $3 trillion in economic activity, enabling applications as diverse as self-driving cars, personalized health care, and traceable food supply chains.

But adding all this data to the system is also creating confusion about how to find it, use it, manage it, and legally, securely, and efficiently share it. Where did a certain dataset come from? Who owns what? Who’s allowed to see certain things? Where does it reside? Can it be shared? Can it be sold? Can people see how it was used?

As data’s applications grow and become more ubiquitous, producers, consumers, and owners and stewards of data are finding that they don’t have a playbook to follow. Consumers want to connect to data they trust so they can make the best possible decisions. Producers need tools to share their data safely with those who need it. But technology platforms fall short, and there are no real common sources of truth to connect both sides.

How do we find data? When should we move it?

In a perfect world, data would flow freely like a utility accessible to all. It could be packaged up and sold like raw materials. It could be viewed easily, without complications, by anyone authorized to see it. Its origins and movements could be tracked, removing any concerns about nefarious uses somewhere along the line.

Today’s world, of course, does not operate this way. The massive data explosion has created a long list of issues and opportunities that make it tricky to share chunks of information.

With data being created nearly everywhere within and outside of an organization, the first challenge is identifying what is being gathered and how to organize it so it can be found.

A lack of transparency and sovereignty over stored and processed data and infrastructure opens up trust issues. Today, moving data to centralized locations from multiple technology stacks is expensive and inefficient. The absence of open metadata standards and widely accessible application programming interfaces can make it hard to access and consume data. The presence of sector-specific data ontologies can make it hard for people outside the sector to benefit from new sources of data. Multiple stakeholders and difficulty accessing existing data services can make it hard to share without a governance model.

Europe is taking the lead

Despite the issues, data-sharing projects are being undertaken on a grand scale. One that’s backed by the European Union and a nonprofit group is creating an interoperable data exchange called Gaia-X, where businesses can share data under the protection of strict European data privacy laws. The exchange is envisioned as a vessel to share data across industries and a repository for information about data services around artificial intelligence (AI), analytics, and the internet of things.

Hewlett Packard Enterprise recently announced a solution framework to support companies, service providers, and public organizations’ participation in Gaia-X. The dataspaces platform, which is currently in development and based on open standards and cloud native, democratizes access to data, data analytics, and AI by making them more accessible to domain experts and common users. It provides a place where experts from domain areas can more easily identify trustworthy datasets and securely perform analytics on operational data—without always requiring the costly movement of data to centralized locations.

By using this framework to integrate complex data sources across IT landscapes, enterprises will be able to provide data transparency at scale, so everyone—whether a data scientist or not—knows what data they have, how to access it, and how to use it in real time.

Data-sharing initiatives are also on the top of enterprises’ agendas. One important priority enterprises face is the vetting of data that’s being used to train internal AI and machine learning models. AI and machine learning are already being used widely in enterprises and industry to drive ongoing improvements in everything from product development to recruiting to manufacturing. And we’re just getting started. IDC projects the global AI market will grow from $328 billion in 2021 to $554 billion in 2025.

To unlock AI’s true potential, governments and enterprises need to better understand the collective legacy of all the data that is driving these models. How do AI models make their decisions? Do they have bias? Are they trustworthy? Have untrustworthy individuals been able to access or change the data that an enterprise has trained its model against? Connecting data producers to data consumers more transparently and with greater efficiency can help answer some of these questions.

Building data maturity

Enterprises aren’t going to solve how to unlock all of their data overnight. But they can prepare themselves to take advantage of technologies and management concepts that help to create a data-sharing mentality. They can ensure that they’re developing the maturity to consume or share data strategically and effectively rather than doing it on an ad hoc basis.

Data producers can prepare for wider distribution of data by taking a series of steps. They need to understand where their data is and understand how they’re collecting it. Then, they need to make sure the people who consume the data have the ability to access the right sets of data at the right times. That’s the starting point.

Then comes the harder part. If a data producer has consumers—which can be inside or outside the organization—they have to connect to the data. That’s both an organizational and a technology challenge. Many organizations want governance over data sharing with other organizations. The democratization of data—at least being able to find it across organizations—is an organizational maturity issue. How do they handle that?

Companies that contribute to the auto industry actively share data with vendors, partners, and subcontractors. It takes a lot of parts—and a lot of coordination—to assemble a car. Partners readily share information on everything from engines to tires to web-enabled repair channels. Automotive dataspaces can serve upwards of 10,000 vendors. But in other industries, it might be more insular. Some large companies might not want to share sensitive information even within their own network of business units.

Creating a data mentality

Companies on either side of the consumer-producer continuum can advance their data-sharing mentality by asking themselves these strategic questions:

  • If enterprises are building AI and machine learning solutions, where are the teams getting their data? How are they connecting to that data? And how do they track that history to ensure trustworthiness and provenance of data?
  • If data has value to others, what is the monetization path the team is taking today to expand on that value, and how will it be governed?
  • If a company is already exchanging or monetizing data, can it authorize a broader set of services on multiple platforms—on premises and in the cloud?
  • For organizations that need to share data with vendors, how is the coordination of those vendors to the same datasets and updates getting done today?
  • Do producers want to replicate their data or force people to bring models to them? Datasets might be so large that they can’t be replicated. Should a company host software developers on its platform where its data is and move the models in and out?
  • How can workers in a department that consumes data influence the practices of the upstream data producers within their organization?

Taking action

The data revolution is creating business opportunities—along with plenty of confusion about how to search for, collect, manage, and gain insights from that data in a strategic way. Data producers and data consumers are becoming more disconnected with each other. HPE is building a platform supporting both on-premises and public cloud, using open source as the foundation and solutions like HPE Ezmeral Software Platform to provide the common ground both sides need to make the data revolution work for them.

Read the original article on Enterprise.nxt.

This content was produced by Hewlett Packard Enterprise. It was not written by MIT Technology Review’s editorial staff.


Getting value from your data shouldn’t be this hard 2021/10/19 18:00

1 / 2